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Stochastic flow diagrams
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Abstract. We introduce Stochastic Flow Diagrams (SFDs), a new mathematical approach to represent complex dynamic systems
into a single weighted digraph. This topological representation provides a way to visualize what otherwise would be a morass
of equations in differences. SFDs model the propagation and reverberation that follows a shock. For example, reverberation
explains how a shock to a financial system can initiate a sequence of events that lead to a crash long after the occurrence of the
shock. SFDs can simulate systems in stable, steady or explosive state. SFDs add Topology to the Statistical and Econometric
toolkit. We believe that SFDs will help policy makers, investors and researchers communicate and discuss better the complexity
of dynamic systems.
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“Since the middle of the 20th century, theoretical
physicists have increasingly turned to this tool to
help them undertake critical calculations. Feyn-
man diagrams have revolutionized nearly every
aspect of theoretical physics.”

David Kaiser (2005)

1. Introduction

By the 1940s, theoretical Physics was stuck in the
mud. The morass of calculations involved in solv-
ing simple quantum electrodynamics (QED) systems
was hindering progress. Around 1948, Richard Feyn-
man introduced a visualization technique, essentially
a bookkeeping device to keep track of the structure of
QED systems (Kaiser, 2005). This seemingly minor
innovation, a mere sketching method, made all the

∗Corresponding author: Marcos López de Prado, Guggenheim
Partners, 330 Madison Ave., New York, NY 10017, USA.
E-mail: marcos.lopezdeprado@guggenheimpartners.com; www.
QuantResearch.info.

difference. It allowed physicists to discuss alterna-
tive system specifications in a clear and formal new
language. Feynman’s idea of visualizing a complex
system of equations did not solve the system itself,
but it helped to talk through it in an intelligible way.
Equations could always be worked out at a later stage,
but the first step was to get the broad idea right.

Nobel laureate Wassily Leontief is one among sev-
eral leading economists who have vocally expressed
the notion that Economics has been stuck in the mud
for quite some time. He diagnosed the problem in the
following terms (Leontief, 1982):

“[E]conometricians fit algebraic functions of all
possible shapes to essentially the same sets of data
without being able to advance, in any perceptible
way, a systematic understanding of the structure
and the operations of a real economic system.”

Old Economic disputes resurface in an apparent end-
less loop, and econometric models seem of little help
in settling those controversies. In the words of Harvey
(1997, pp. 199–200):

2158-5571/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved
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“[W]hat have economists learnt from fitting such
models? The answer is very little. I cannot think
of one article which has come up with a cointe-
gration relationship which we did not know about
already from economic theory [ . . . ] The solution
is to combine the flexibility of a time series model
with the interpretation of regression.”

This situation presents some striking similarities
with the ailments experienced by physicists around
the middle of the 20th century. Part of the problem is
the difficulty of discussing complex, high dimensional
systems on the basis of dozens (if not hundreds) of
equations simultaneously interacting with each other.
It seems it would be useful to introduce a bookkeeping
device à la Feynman, however specifically designed for
representing Time Series systems. This would facilitate
debates (or the interpretation of regressions, as Harvey
put it), by tracking the relationships involved in com-
peting Econometric models. In order to be successful,
such device must incorporate the notion of time lapse
that is essential to Time Series analysis.

Several scientific areas deal with complex systems.
Computer scientists identify the possible points of
failure in a network, and anticipate which routers
or switches may become overloaded before a crash
occurs. Operations researchers compute the path that
optimally disseminates information at a minimum cost.
Epidemiologists model the speed and propagation of
diseases, which allows them to determine their source
and establish areas of quarantine. These breakthroughs
rely on recent mathematical advances in the subjects
of Topology and Graph Theory.

Topology and Graph Theory are two major areas of
Mathematics that emanated from the “Seven Bridges of
Königsberg” problem. Around 1735, Leonhard Euler
asked the question of whether it was possible to walk
through the city crossing each bridge once and only
once, ending at the starting point. Euler recognized that
Geometry could not solve this problem, because the
relevant information was not the exact geographic loca-
tion of the bridges, but their connections. This focus on
connectedness is the reason why scientists use Topol-
ogy and Graph Theory to study complex systems. A
practical example can be found in subway maps. These
maps are not illustrations of a geographic or geometric
structure, but topological representations of how lines
and stations are interconnected. Should train flow be
disrupted at a particular station, a passenger can use
that topological map to quickly recognize what nodes

must be avoided. Adding to that map geographic details
would not increase our understanding of the subway
system as a whole. In fact, it could be argued that adding
such geographic details may obfuscate the understand-
ing of the system. In a similar way, relying solely on
linear algebra and stochastic calculus to study a system,
such as the circulation of financial flows, may pro-
vide a level of detail that obfuscates some very relevant
questions. For instance, linear algebra and stochastic
calculus tell us very little about the number of paths
and cycles in a financial network, the points of most
likely congestion, what nodes could trigger a credit
freeze should they shut down, etc. If statistical tests
and numerical tables sufficed to understand the state
of a complex system, the medical profession would not
increasingly rely on CAT scans, MRI, ultrasounds and
other visualization technologies to diagnose, monitor
and treat patients. We are not suggesting that Statistical
and Econometric applications are not useful, however
we believe that Topology should be added to the Statis-
tical and Econometric toolkit used to study systems.

The first goal of this paper is to introduce a new
Graph Theory technique to visualize complex dynamic
systems. This technique is general and can be applied
to a wide variety of specifications and applications,
not only econometric models or financial problems.
Our second goal is to illustrate how this technique can
help us simulate the system’s response to a shock.
For example, we will study how a shock can lead
to a crash long after its occurrence, through the phe-
nomenon of reverberation. Our third goal is to provide
specific algorithms and computer code that carry out
the calculations involved in our study.

The rest of the paper is organized as follows: Section
2 reviews the existing literature and outlines our contri-
butions. Section 3 sets definitions and concepts useful
to analyze a Time Series system. Section 4 describes
how to generate topological representations of Time
Series models. Section 5 discusses shock reverbera-
tion and equilibrium/disequilibrium dynamics. Section
6 presents our conclusions. The mathematical appen-
dices explain in greater detail the arguments employed
in this paper, and the Python code contains the imple-
mentation of some key aspects of our methodology.1

1All code in this paper is provided “as is”, and contributed to
the academic community for non-business purposes only, under a
GNU-GPL license. Users explicitly renounce to any claim against
the authors. The authors retain the commercial rights of any for-
profit application of this software, which must be pre-authorized in
written by the authors.
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2. Literature and contribution

Our contribution combines elements of Graph The-
ory and Time Series analysis. In this section we will cite
a few essential references to these two broad subjects,
and explain how this paper connects them.

Graph Theory is a well-established area of Mathe-
matical research. Graphs are one of the prime objects
of study in Discrete Mathematics, and an essential
tool to solve problems in Combinatorial Mathemat-
ics. There is a growing literature of advanced papers
presenting Topological and Graph Theory applications
to computer science and operations research. A good
general treatment of this subject can be found in Bol-
lobás (2013) or Bondy and Murty (1976). Specific
treatment of random graph theory can be found in
Durrett (2007). Easley and Kleinberg (2010) and Jack-
son (2010) discuss applications of graphs to social and
economic networks. Rebonato and Denev (2014) intro-
duce a novel Bayesian networks approach to coherent
asset allocation.

Excellent references for Econometric theory and
Time Series analysis would include Greene (2008),
Hamilton (1994), Muirhead (1982) or Tsay (2010).
Campbell, Lo and MacKinlay (1996) compile many
great examples of Econometric approaches to practical
financial problems.

Inspired by visualization techniques à la Feynman,
we introduce Stochastic Flow Diagrams (SFDs), a new
mathematical approach to represent complex systems
of Time Series models in Graph form. This topological
representation provides a way to visualize what other-
wise would be a morass of equations in differences.
Our method combines elements of Graph Theory and
Inferential Statistics to visualize the structure of a com-
plex system, allowing for an intuitive interpretation of
its state and future course.

The SFD method takes into consideration the
dynamic properties of the system, determining the
direction of the flows in terms of lead-lag and causality
effects. SFD connectivity is determined by statistical
significance of the graph’s arcs, which are weighted
based on the estimated parameters of the Time Series
model. Because SFDs map dynamic systems, they
incorporate a time dimension. This is made explicit
in the design of the SFD, through the definitions of
outbound arc and lagged vertex.

Outbound arcs and lagged vertices are essential fea-
tures of our methodology. They allow us to model
memory effects. Without them, the system would

instantaneously adjust to a shock, and lead-lag effects,
error-corrections, trends, momentum or crashes would
not be possible. Examples of systems with memory
effects are economic and financial systems, where the
consequences of a shock can be observed for a long
period after its occurrence. This phenomenon, called
reverberation, is a feature of our approach that is not
present in studies that use contemporaneous correla-
tion as the criterion to establish connections (see Calkin
and López de Prado (2014) for a review).

In a flow system, one component may receive flow
from more than one other component. For example,
suppose three components a, b and c, where a receives
flow from b and c. Although all relationships in a graph
are by definition established in pairs, their estimation
cannot be carried out in pairwise terms (b → a, c →
a), or flow would not be additive. In a flow system,
each equation determines the value of a variable as a
function of multiple other variables (not only one-to-
one). Accordingly, SFD connections are the solution
to a full system of dynamic equations in multivariate
form.

Brualdi (2010) demonstrates the mutually beneficial
relationship between Graph Theory and Linear Alge-
bra. Accordingly, we believe that SFD will help policy
makers, investors and researchers communicate and
discuss better the complexity of dynamic systems. For
a particular application of these methods, we refer the
reader to Calkin and López de Prado (2014), where we
study Macro financial flows using SFDs.

3. Graph theory nomenclature

Graph Theory is a relatively new and rapidly grow-
ing subject. Its nomenclature is sometimes confusing,
with different authors referring to the same concept
with different names. In this section we will set out
the key definitions and nomenclature used later in the
paper.

3.1. Definitions

First, we begin with the definition of a graph as a
set of system components (vertices), interrelated by
connections (edges).

Definition 1. (Graph) A graph G is an ordered pair G =
(VG, EG), where VG is a nonempty set of vertices,
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and EG is a subset of the set of unordered pairs of
elements of VG, called edges. Then, an incidence func-
tion ψG can be derived as the function that associates
each element of EG with an unordered pair of vertices
of G.

If e ∈ EG and (u, υ) ⊂ VG, then u and υ are con-
nected by e if and only if ψG[e] = (u, υ). Recall that
(u, υ) is an unordered pair, which makes the graph
undirected. This definition of a graph is not adequate
for situations where the pair needs to be ordered, con-
veying information regarding the direction of flow.
This is addressed in the next definition.

Definition 2. (Directed Graph, or Digraph) A digraph
D is an ordered pair D = (VD, AD), where VD is a
nonempty set of vertices, and AD is a subset of the
set of ordered VDxVD pairs of elements, called arcs.
Then, an incidence function ψD can be derived as the
function that associates each element of AD with an
ordered pair of vertices of D.

If a ∈ AD and (u, υ) ⊂ VD, then u is connected to
υ by a if and only if ψD[a] = (u, υ). Now (u, υ) is
an ordered pair, where the arc starts in u and ends in
υ. Definition 2 allows for loops (arcs that connect a
vertex with itself), but multi-edges are still not allowed
(∀u, υ ∈ VD, where u and υ may be the same, there is
at most only one a ∈ AD such that ψD[a] = (u, υ)).
Arcs do not need to have the same relative weight. The
concept of weighted digraph introduces the possibility
of channeling flows at varying rates.

Definition 3. (Weighted Digraph) A digraph D is
weighted if it is endowed with a function in the real
domain, ωD : AD → R, i.e. ∀a ∈ AD, ∃ωD[a] ∈ R.
Then, the weighted digraph is characterized by the
triple D = (VD, AD, ωD).

If ∀a ∈ AD, ωD[a] = k, where k is a real con-
stant, then the weighted digraph can be reduced to an
unweighted form. It is often useful to reduce the com-
plexity of a digraph to a portion of it, a concept formally
defined as subdigraph.

Definition 4. (Subdigraph) D′ is a subdigraph of D

if VD′ ⊆ VD, AD′ ⊆ AD and the elements of AD′ are
edges relative to the vertex set D′. Then, ψD′ is the
restriction of ψD to AD′ .

Given a digraph, we can use alternative definitions
of routes crossing through its vertices and arcs.

Definition 5. (Walk, Trail, Path, Cycle) A walk in
D between two vertices u0, uk is a finite non-null
sequence W[u0, uk] = u0, a1, u1, a2, . . . , uk,

whose terms are alternately vertices and arcs, such
that, for 1 ≤ i ≤ k, the ends of ai are ui−1 and ui. The
length of the walk is the integer k. A trail is a walk
where the arcs a1, . . . , ak are distinct. A path is a
trail where the vertices u0, . . . , uk are also distinct. A
cycle is a path where u0 = uk.

A path with no repeated vertices is called a simple
path, and a cycle with no repeated vertices or edges
(aside from the necessary repetition of the start and end
vertex) is a simple cycle. The vertices of a cycle are said
to be strongly connected. A path that visits every arc
exactly once is called an Eulerian path. An Eulerian
cycle is an Eulerian path that starts and ends on the same
vertex. A path that visits every vertex exactly once is
called a Hamiltonian path. A Hamiltonian cycle is a
Hamiltonian path that is a cycle. Thanks to the above
concepts, we can establish a measure of distance.

Definition 6. (Distance, Diameter) Given a ∈ AD and
(u, υ) ⊂ VD, the distance between vertices u and
υ, dD[u, υ], is the sum of the weights across a
shortest (not necessarily unique) path between them.
dD[u, u] = 0. When u and υ are unreachable from
each other, dD[u, υ] = ∞. The diameter of VD is
the maximum distance between any two vertices in
it, maxu, υ∈D dD[u, υ].

Definition 7. (Density, Degree of Centrality) The den-
sity of a digraph D is defined as d = m

n(n−1) , where n
is the number of vertices and m is the number of arcs.
The degree of centrality of a vertex is the fraction of
nodes it is connected to.

The notion behind this definition of density is to
compute the average number of arcs per possible pair
of vertices.

Definition 8. (Neighborhood, Clustering) The neigh-
borhood of a vertex υi ∈ VD is defined as Ni ={
υj ∈ VD

∣∣(υi, υj) ∈ AD ∧ (υj, υi) ∈ AD

}
. Its

clustering coefficient is defined as Ci =
|{(υj, υk)|υj, υk∈Ni ∧(υj, υk)∈AD}|

|Ni|(|Ni|−1) , and |.| is the function
that counts the number of items in a set.

Definition 9. (Adjacency, Local Vertex Connectivity)
Given to vertices (u, υ) ⊂ VD, they are adjacent if and
only if ∃a ∈ AD |ψD [a] = (u, υ). The local vertex
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Fig. 1. Example of a directed graph.

connectivity of two non-adjacent vertices, kD[u, υ], is
defined as the number of vertices that must be removed
(along with their incident arcs) to disconnect u andυ. If
u and v are adjacent, then their local vertex connectivity
is defined as kD[u, υ] = kD′ [u, υ] + 1, where D′ is
the subdigraph of D that excludes the arcs connecting
u and v.

Intuitively, the clustering coefficient gives us the
proportion of arcs within its neighborhood divided by
the number of possible arcs that could exist between
them. This is a measure of the degree to which vertices
tend to group together.

3.2. An example

Before we move forward, it may be helpful
to see how these concepts can be applied to
describe a Time Series system. Suppose a finan-
cial system with four variables: w, x, y and z.
All variables are positively related. Flow can prop-
agate following the path w → x → z or w →
y → z. In terms of graph theory, this is repre-
sented as D = (VD, AD), where VD {w, x, y, z}
andAD = {(w, x), (x, z), (w, y), (y, z)}. Labeling
the elements of AD = {a1, a2, a3, a4}, the inci-

dence function can be derived as ψD[a1] = (w, x),
ψD[a2] = (x, z), ψD[a3] = (w, y), ψD[a4] = (y, z).
Furthermore, we could assign some weights to the
arcs, whereby ωD[a1] = 1, ωD[a2] = −1, ωD[a3] =
−1,ωD[a4] = 1. Figure 1 pictures the associated
weighted digraph. Consider the alternative digraph
D′ = (VD′ , AD′ ), where AD′ = {a1, a2}. Then, D′ is
a subdigraph of D, because D′ is contained in D, and
ψD′ is a restriction of ψD to AD′ . The walk between w
and z is given by W[w, z] = w, a1, x, a2, z, which
has length 2. Because arcs a1, a2 are distinct, W[w, z]
is also a trail. Because w and z are distinct, W[w, z]
is also a path.W[w, z] is an Eulerian path of D′, but
not of D. Walk W[w, z] has a distance of 0. Given the
arcs’ direction, the digraph has infinite diameter, and
there are no cycles.

We make extensive use of these definitions in Calkin
and López de Prado (2014), and refer the reader to that
publication for further examples.

4. Topological representation of time series
models

In this section we will demonstrate how to con-
struct Stochastic Flow Diagrams (SFDs), which are
complex systems of Time Series models topologically
represented as weighted digraphs. We will concentrate
on the type of topology needed for most applications,
however the concept of SFDs can be extended to other
types of Time Series.

4.1. Autoregressive processes

Let {yt} be a series of real-valued random variables,
indexed by time t. An autoregressive model (AR) is
a mathematical model of a random variable that is
self-excited through a feedback mechanism. In its sim-
plest form, it is characterized by a one-lag equation (or
AR(1)),

yt = c + ϕ1yt−1 + εt (1)

where ϕ1 is the real-valued factor that scales the lagged
observation, c is a real-valued constant, and εt is a
random variable distributed as white noise. Without
loss of generality, we shall assume that c = 0 after
centering the variables. We would like to represent the
information contained in Eq. (1) into a graph. We create
a weighted digraph D = (VD, AD, ωD), where
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• VD = {υ0, υ1}

• AD = {o0, a1}

• ψD[o0] = (υ0, υ1)

ψD[a1] = (υ1, υ0)

• ωD[o0] = 1

ωD[a1] = ϕ1

The key concept to grasp is that vertices are asso-
ciated with values (or states) of random variables. For
example, vertex υ0 is associated with value yt , and ver-
tex υ1 is associated with value yt−1. The time structure
is incorporated through the concept of lagged vertex.

Definition 10. (Lagged and Current vertices) Consider
a vertex υk ∈ VD that is associated with a variable
lagged k times, yt−k, where k ≥ 0. If k > 0, υk is a
lagged vertex, and otherwise it is a current vertex.

There is one vertex for each variable, lagged or cur-
rent. We will represent current variables with elliptical
vertices, and lagged variables with diamond-shaped
vertices. Vertices are connected by arcs, which can be
outbound or inbound.

Definition 11. (Outbound arc) Given two vertices
υk, υk+1 ∈ VD, an arc ok ∈ AD is outbound if it con-
nects a vertex υk to a vertex υk+1, withωD[ok] = yt−k.

Definition 12. (Inbound arc) Consider two vertices
υk, u0 ∈ VD, such that vertex υk is associated with
variable yt−k, and vertex u0 is associated with vari-
able xt . Provided that xt and yt are different variables,
an arc ak ∈ AD is inbound if it connects a vertex υk

to a vertex u0, with ωD[ak] = ϕkyt−k and k ≥ 0. If xt

and yt are the same variable, then the condition is that
k > 0, to avoid self-loops.

Arc o0 is outbound because it takes flow away from
υ0 towards lagged vertexυ1 at a weight 1, thus adding a
lag. Outbound arcs always have unit weight, and there
are as many as the number of lags required by the
model. We will represent this type of arc with a dashed
arrow. In contrast, arc a1 is inbound because it goes
fromυ1 toυ0, returning the flow to the current variable.
There are as many inbound arcs as regression coeffi-
cients, which determine their weight, likeωD[a1] = ϕ1
in the case above. We will represent inbound arcs with
a solid arrow. In other words, digraph D is replicat-
ing the lag structure in Eq. (1) by using vertex υ1 as

Fig. 2. SFD representation of an AR(1) process.
Note: Each variable is associated with one vertex. An ellipse-shaped
vertex signals a current variable, and a diamond-shaped vertex sig-
nals a lagged variable. An outbound arc connects a current with a
lagged variable with unit weight, and it is represented with a dashed
arrow. An inbound arc connects a (current or lagged) variable with a
current variable, and it is represented with a solid arrow. Its weight
is given by the regression coefficient that links both variables in the
AR(1) equation. The user can report different arc weights and vertex
values with alternative colors.

a memory cell that receives (through outbound arc o0)
and returns (through inbound arc a1) flow as needed.
Different colors can be used to represent various arc
weights and vertex values. Figure 2 represents AR(1)
as a weighted digraph, D.

Lags beyond one can have an effect on y. Let’s con-
sider now the case with two lags, as expressed in the
AR(2) equation

yt = ϕ1yt−1 + ϕ2yt−2 + εt (2)

which leads to a weighted digraph D =
(VD, AD, ωD), where

• VD = {υ0, υ1, υ2}

• AD = {o0, o1, a1, a2}

• ψD[o0] = (υ0, υ1)

ψD[o1] = (υ1, υ2)

ψD[a1] = (υ1, υ0)

ψD[a2] = (υ2, υ0) (3)

• ωD[o0] = 1

ωD[o1] = 1
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Fig. 3. SFD representation of an AR(2) process.
Note: Since the process involves a variable lagged twice, there is one
elliptical vertex (current variable) and two diamond vertices (lagged
variables). Two outbound (dashed) arcs drive flow towards lagged
variables, and two inbound (solid) arcs drive it back towards the
elliptical vertex.

ωD[a1] = ϕ1

ωD[a2] = ϕ2

Figure 3 illustrates the representation of AR(2) as a
weighted digraph, D.

In general terms, an AR(p) process is characterized
by the p-lag equation

yt =
p∑

k=1

ϕkyt−k + εt (4)

where p is the integer number of lags, ϕk is the
real-valued factor that scales the kth lagged observa-
tion, and εt is a random variable distributed as white
noise. We would like to represent the information
contained in Eq. (4) into a graph. We construct a
digraph D = (VD, AD, ωD), where for k = 0, . . . ,

p − 1:

• VD = {υk}

• AD = {ak+1} ∪ {ok}

• ψD[ak+1] = (υk+1, υ0)

ψD[ok] = (υk, υk+1) (5)

• ωD[ak+1] = ϕk+1

ωD[ok] = 1

Figure 4 draws the SFD associated with AR(3),
AR(4), AR(5) and AR(10) processes. Appendix 2 con-
tains the implementation of Eq. (5) in Python language.

4.2. Vector autoregressive systems

The concept of AR models is extended to a system
of equations in Vector AutoRegression (VAR) models.
Consider a VAR(1) model on 2 variables

y1,t = ϕ1,1,1y1,t−1 + ϕ1,2,1y2,t−1 + ε1,t

y2,t = ϕ2,1,1y1,t−1 + ϕ2,2,1y2,t−1 + ε2,t (6)

whereϕi,j,k is the regression coefficient associated with
equation i, regressor j, after k lags. The error terms
satisfy the conditions of a generalized white noise
(in short, E[εi,t] = 0; E[εi,tεj,t] = &i,j such that the
nxn matrix formed by {&i,j} is symmetric positive
definite; E[εi,tεj,t−δ] = 0, ∀i, j = {1, . . . , n} and any
non-zero integer δ. See Hamilton (1994, pp. 257–258)
for details). Following the procedure introduced ear-
lier, the topological representation of Eq. (6) consist in
constructing a weighted digraph D = (VD, AD, ωD),
where:

• VD = {υ1,0, υ1,1, υ2,0, υ2,1}

• AD = {o1,0, o2,0, a1,1,1, a1,1,2, a2,1,1, a2,1,2}

• ψD[o1,0] = (υ1,0, υ1,1)

ψD[o2,0] = (υ2,0, υ2,1)

ψD[a1,1,1] = (υ1,1, υ1,0)

ψD[a1,1,2] = (υ1,1, υ2,0)

ψD[a2,1,1] = (υ2,1, υ1,0)

ψD[a2,1,2] = (υ2,1, υ2,0) (7)

• ωD[o1,0] = 1

ωD[o2,0] = 1

ωD[a1,1,1] = ϕ1,1,1
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Fig. 4.1–4.3. From left to right, SFD representation of AR(3), AR(4), AR(5).
Note: Because AR(p) are single equation processes, they have a single elliptical vertex (current variable), with as many diamond vertices as
lagged variables. Each inbound arc (solid arrow) is associated with one equation parameter (which determines its weight), and each equation
parameter is associated with a single inbound arc. There are as many outbound arcs as diamond vertices, all with unit weight.

ωD[a1,1,2] = ϕ2,1,1

ωD[a2,1,1] = ϕ1,2,1

ωD[a2,1,2] = ϕ2,2,1

In Section 4.1, we dealt with only one equation,
which allowed us to simplify the notation. Working
with 2 equations has required the adoption of a more
compact notation. In Eq. (7) we denote as υi,k the
vertex associated with variable i and lag k (yi,t−k).
Arc oi,k denotes the connection that begins in ver-
tex υi,k and ends in vertex υi,k+1 (outbound arc), thus
lagging the variable. Once the flow has been suffi-
ciently lagged, an inbound arc ai,k,j channels it back,
from vertex υi,k to vertex υj,0, where k > 0 and i
and j may be equal or different (inbound arc). The

topological representation of this system is charted in
Fig. 5.

Consider now a VAR(p) system on two equations,
like the one in Eq. (8).

y1,t = ε1,t +
p∑

k=1

ϕ1,1,ky1,t−k + ϕ1,2,ky2,t−k

y2,t = ε2,t +
p∑

k=1

ϕ2,1,ky1,t−k + ϕ2,2,ky2,t−k (8)

This system can be represented as a weighted
digraph D = (VD, AD, ωD), whereas for k = 0,

. . . , p − 1 we set:
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Fig. 4.4. SFD representation of a AR(10) process.

• VD = {υ1,k, υ2,k}

• AD = {a1,k+1,1} ∪ {a2,k+1,1} ∪ {a1,k+1,2}

∪{a2,k+1,2} ∪ {o1,k, o2,k}

• ψD[a1,k+1,1] = (υ1,k+1, υ1,0)

ψD[a2,k+1,1] = (υ2,k+1, υ1,0)

ψD[a1,k+1,2] = (υ1,k+1, υ2,0)

Fig. 5. SFD representation of a VAR(1) system on two
variables.
Note: Without looking at the equation behind this diagram, it is
obvious that it is a VAR system. AR processes cannot involve more
than one elliptical vertex. We know that this is a VAR(1) system on
two equations because there are two elliptical vertices, and only one
diamond-shaped vertex lagging each contemporaneous variable.

ψD[a2,k+1,2] = (υ2,k+1, υ2,0)

ψD[o1,k] = (υ1,k, υ1,k+1)

ψD[o2,k] = (υ2,k, υ2,k+1) (9)

• ωD[a1,k+1,1] = ϕ1,1,k+1

ωD[a2,k+1,1] = ϕ1,2,k+1

ωD[a1,k+1,2] = ϕ2,1,k+1

ωD[a2,k+1,2] = ϕ2,2,k+1

ωD[o1,k] = 1

ωD[o2,k] = 1

Figure 6 draws the SFD associated with VAR(2),
VAR(3), VAR(5) and VAR(10) systems on two vari-
ables. As it can be appreciated, merely adding a lag to
a VAR model substantially increases its complexity.
Also, the architecture of SFD representations of
VAR(p) models is much more complex and less hier-
archical than the SFD representations of their AR(p)
counterparts.

Finally, we will show how to translate into SFDs a
VAR(p) model on any number n of equations, charac-
terized by Eq. (10).
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Fig. 6.1. SFD representation of a VAR(2) system on two variables.
Note: As this diagram illustrates, simply adding one lag to a VAR
system substantially increases the complexity of the model, much
more so than it was in the case of AR(p) specifications.

y1,t =
n∑

j=1

p∑

k=1

ϕ1,j,kyj,t−k + ε1,t

. . .

yn,t =
n∑

j=1

p∑

k=1

ϕn,j,kyj,t−k + εn,t (10)

The system can be represented as a weighted digraph
D = (VD, AD, ωD). For i, j = 1, . . . , n and k =
0, . . . , p − 1 we set:

• VD = {υi,k}

• AD = {ai,k+1,j} ∪ {oi,k}

• ψD [ai,k+1,j] = (υi,k+1, υj,0)

ψD [oi,k] = (υi,k, υi,k+1) (11)

• ωD[ai,k+1,j] = ϕj,i,k+1

ωD[oi,k] = 1

Figure 7 draws the SFD associated with VAR(1) and
VAR(2) system on three variables. Figure 8 draws the
SFD associated with a VAR(1) system on five vari-
ables. Appendix 3 contains the implementation of Eq.
(11) in Python language. Because the left-hand side
variables in each equation are not explanatory variables
on any other equation, the system is not simultane-
ously determined, thus each equation can be fitted
individually by ordinary least squares (OLS) (see Zell-
ner (1962), Greene (2008, p. 696)).

4.3. Structural vector autoregression systems

Consider now a Structural Vector AutoRegres-
sion (SVAR) model. This is a system that combines
synchronous variables with lagged variables, such as
the one characterized by Equation (12):

y1,t =
n∑

j=2

ϕ1,j,0yj,t +
n∑

j=1

p∑

k=1

ϕ1,j,kyj,t−k + ε1,t

. . .

yi,t =
n∑

j=1
j /= i

ϕi,j,0yj,t +
n∑

j=1

p∑

k=1

ϕi,j,kyj,t−k + εi,t

. . .

yn,t =
n−1∑

j=1

ϕn,j,0yj,t +
n∑

j=1

p∑

k=1

ϕn,j,kyj,t−k + εn,t

(12)

The system can be represented as a weighted digraph
D = (VD, AD, ωD). For i, j = 1, . . . , n and k =
0, . . . , p − 1 we set:

• VD = {υi,k}

• AD = {ai,0,j|i /= j} ∪ {ai,k+1,j} ∪ {oi,k}

• ψD[ai,0,j] = (υi,0, υj,0), where i /= j

ψD[ai,k+1,j] = (υi,k+1, υj,0)

ψD[oi,k] = (υi,k, υi,k,+1) (13)

• ωD[ai,0,j] = ϕj,i,0, where i /= j

ωD[ai,k+1,j] = ϕj,i,k+1

ωD[oi,k] = 1

Figure 9 displays the SFD associated with
SVAR systems for (p, n) = (1, 2) and (p, n) = (2, 2).
Inbound arcs connecting two elliptical vertices sig-
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Fig. 6.2, 6.3. From left to right, SFD representation of VAR(3) and VAR(5) systems on two variables.
Note: Regardless of how complex a diagram may look, it is easy to recognize the system of equations behind it. The number of equations is
given by the number of elliptical vertices, and looking at a particular variable, counting the number of diamond-shaped vertices tells us the lags
involved. Here we represent all inbound arcs, but in practice these diagrams will be simpler as a result of statistically insignificant regression
coefficients, thus highlighting what connections are truly relevant and which are not.

nal the presence of contemporaneous effects. To make
these contemporary effects more obvious, we draw the
involved inbound arcs with a flat arrowhead. Appendix
4 contains the implementation of Eq. (13) in Python
language.

Appendix 5 summarizes the SFD symbology
employed so far. Our procedure is not limited to AR,
VAR or SVAR specifications. Many other dynamic
specifications are also amenable to this approach. For
example, Error Correction systems will have vertices
associated with the difference between pairs of lagged
variables. ARMA systems will have vertices hold-
ing the moving average components, with the relevant
connections just as we did in this section with autore-
gressive components.

5. Shock propagation and reverberation

Each of the SFD’s vertices represents a random
variable. Their random nature derives from the unpre-
dictability of the shocks that disturb them. Propagation
is the transmission of the shock through the network,
via inbound arcs. Because lagged vertices intro-
duce memory effects, shocks are not instantaneously
resolved. Reverberation is the persistence of the shock
after its occurrence. A shock reverberates over time,
generating waves of flows that further disturb the
system, which result in complex interactions. Depend-
ing on the configuration of the system, reverberation
can fade over time (stable state), persist indefinitely
(steady) or generate a crash (explosive state). In this
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Fig. 6.4. SFD representation of a VAR(10) system on two variables.



N.J. Calkin and M. López de Prado / Stochastic flow diagrams 33

Fig. 7.1, 7.2. From left to right, SFD representation of VAR(1) and
VAR(2) systems on three variables.

section we will illustrate how SFDs can help visualize
the outcomes of these shocks.

A VAR(1) system on two equations provides us with
the simplest case of reverberation. In Appendix 6 we
have derived the conditions under which such system
can be stable, steady or explosive. Solving the equiva-

lent equations for large systems is not always practical,
in which case SFDs constitute a valuable tool to study
the response of a system to specific shocks.

5.1. Stable state

Consider a VAR(1) system on two equations, where
each variable is positively correlated with its own
lagged value, and negatively correlated with the lagged
value of the other variable. One example would be a
financial system where stocks and bonds have momen-
tum, and each has a reverse effect on the other (if stocks
go up today, bonds will tend to go down tomorrow, and
vice versa). This situation can be characterized with the
following parameters matrix:

( =
[
ϕ1,1,1 ϕ1,2,1

ϕ2,1,1 ϕ2,2,1

]
=

[ 1
4 − 1

4

− 1
4

1
4

]
(14)

Following our analysis in Appendix 6,
this parameters matrix has eigenvalues

)1,1 = tr[(]+
√

(tr[(])2−4|(|
2 = 1

2 and )2,2 =
tr[(]−

√
(tr[(])2−4|(|

2 = 0.
The conclusion is that, no matter how strong shocks

are, this system should always stabilize and slowly
converge to a new equilibrium. We can use SFDs to
simulate shocks and observe how the system evolves
over time. For instance, suppose that ‘Stocks’ experi-
ence a negative shock, ε1,0 = − 1

2 . Figure 10 draws the
corresponding SFDs after 1, 5 and 10 periods, follow-
ing the same symbology discussed in Appendix 5.

In a stable state, the system absorbs the shock and
new equilibrium levels are reached after a few periods.
The rate of change fades over time, as indicated by the
color of the vertices’ left half. The cumulative effect
converges to the new equilibrium level, as evidenced
by the color of the vertices’ right half. Note that stocks
are much more affected than bonds.

5.2. Steady state

Consider a VAR(1) system on two equations, with
the following parameters:

( =
[
ϕ1,1,1 ϕ1,2,1

ϕ2,1,1 ϕ2,2,1

]
=

[ 1
2 − 1

2

− 1
2

1
2

]
(15)



34 N.J. Calkin and M. López de Prado / Stochastic flow diagrams

Fig. 8. SFD representation of a VAR(1) system on five variables.

This parameters matrix has eigenvalues

)1,1 = tr[(]+
√

(tr[(])2−4|(|
2 = 1 and )2,2 =

tr[(]−
√

(tr[(])2−4|(|
2 = 0.

Like in the case earlier, suppose that ‘Stocks’ expe-
rience a negative shock, ε1,0 = − 1

2 . Figure 11 draws
the corresponding SFDs after 1, 5 and 10 periods.

In a steady state, the system is unable to absorb the
shock, and a drift continues until another shock coun-
ters it. The rate of change does not fade over time,
as indicated by the color of the vertices’ left half.
The cumulative effect grows indefinitely, as evidenced
by the color of the vertices’ right half. Because the
drift continues, bonds also end up being significantly
affected.

5.3. Explosive state

Consider a VAR(1) system on two equations, with
the following parameters:

( =
[
ϕ1,1,1 ϕ1,2,1

ϕ2,1,1 ϕ2,2,1

]
=

[ 2
3 − 2

3

− 2
3

2
3

]
(16)

This parameters matrix has eigenval-

ues )1,1 = tr[(]+
√

(tr[(])2−4|(|
2 = 4

3 and

)2,2 = tr[(]−
√

(tr[(])2−4|(|
2 = 0.

Following earlier examples, suppose that ‘Stocks’
experience a negative shock, ε1,0 = − 1

2 . Figure 12
draws the corresponding SFDs after 1, 5 and 10
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Fig. 9. SFDs associated with SVAR systems for (p, n) = (1, 2) and
(p, n) = (2, 2).
Note: It is evident from these diagrams that the systems of equations
behind them cannot be VAR. The reason is, there are inbound arcs
connecting two elliptical vertices, signaling the presence of contem-
poraneous effects. To make these more obvious, those inbound arcs
are drawn with a flat arrowhead. Hence, these diagrams represent
SVAR systems.

periods. In an explosive state, the system amplifies the
shock over time. The rate of change increases after each
period, as indicated by the color of the vertices’ left
half. The cumulative value explodes after a few peri-
ods, as evidenced by the color of the vertices’ right half.
The entire system is disrupted and eventually crashes.

SFDs make it easy to simulate alternative scenarios,
like studying the effects of combined shocks, or shock
propagation after manually adding or removing one of
the arcs, based on the researcher’s fundamental believe
that such arc will play a different role going forward.

6. Conclusions

Visualization techniques have proven extremely
valuable in advancing theoretical research in scientific
disciplines, particularly in theoretical Physics. Easier
visualization can help policy makers, investors and
economists describe their models without having to
resort to lengthy formulaic representations. They can
help hedge fund managers identify early trends, Cen-
tral Bankers design intervention tools, policy makers
detect regime changes, among many other applica-
tions. As it relates to global macro trading, they can
help monitor how financial flows propagate across var-
ious investment assets.

In this paper we propose a novel methodology to
visualize the complex network of flows in a Time
Series system, which we call Stochastic Flow Dia-
grams (SFDs). SFDs are topological representations
of a system of equations in differences, such as
those encountered in Time Series models. Our method
combines elements of Graph Theory and inferential
statistics to visualize the structure of a complex system,
allowing for an intuitive interpretation of its state and
future course. The SFD method takes into considera-
tion the dynamic properties of the system, determining
the direction of the flows in terms of lead-lag and
causality effects. SFD connectivity is determined by
statistical significance of the graph’s arcs, which are
weighted based on the estimated parameters of the
Time Series model. Because SFDs map dynamic sys-
tems, they incorporate a time dimension. This is made
explicit in the design of the SFD, through the defini-
tions of outbound arc and lagged vertex.

We have shown that a small number of SFD attributes
is able to describe a wide range of Time Series
models. In the case of Macroeconomics, SFD allows
researchers monitor flow dynamics, as the values
adopted by the random variables change over time. One
important practical application of this approach is to be
able to visualize the status of the system, and antici-
pate the possibility of overflows. A second application
is to simulate thepropagationof shocksemanating from
alternative vertices, with dramatically different conse-
quences depending on whether the system is in a stable,
steady or explosive state. The number of scenarios a
researcher can simulate is enormous, and SFDs offer an
intuitive way to compute, compare and communicate
the alternative outcomes. We refer the reader to Calkin
and López de Prado (2014) for a particular application
of SFD to the study of Macro financial flows.
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Fig. 10. Evolution of a system in a Stable state, after 1, 5 and 10 periods.
Note: In a stable state, the system absorbs the shock and new equilibrium levels are reached after a few periods. The rate of change fades over
time, as indicated by the color of the vertices’ left half. The cumulative effect converges to the new equilibrium level, as evidenced by the color
of the vertices’ right half. Note that stocks are much more affected than bonds.

Fig. 11. Evolution of a system in a Steady state, after 1, 5 and 10 periods.
Note: In a steady state, the system is unable to absorb the shock, and a drift continues until another shock counters it. The rate of change does
not fade over time, as indicated by the color of the vertices’ left half. The cumulative effect grows indefinitely, as evidenced by the color of the
vertices’ right half. Because the drift continues, bonds also end up being significantly affected.
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Blanco (UBS), Jonathan M. Borwein (University of
Newcastle), Peter Carr (Morgan Stanley, NYU), Marco
Dion (J.P. Morgan), David Easley (Cornell Univer-
sity), Matthew D. Foreman (University of California,
Irvine), Jon Kleinberg (Cornell University), Jeffrey

Lange (Guggenheim Partners), Attilio Meucci (KKR,
NYU), Alberto Musalem (Federal Reserve Bank of
New York), Riccardo Rebonato (PIMCO, University
of Oxford) and Luis Viceira (HBS).

Disclaimer

The opinions expressed by the authors of this arti-
cle do not necessarily reflect the views of Berkeley
Lab or Guggenheim Partners. No investment advice
of particular course of action is recommended by this
article.
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Fig. 12. Evolution of system in an Explosive state, after 1, 5 and 10 periods.
Note: In an explosive state, the system magnifies the shock over time. The rate of change increases after each period, as indicated by the color of
the vertices’ left half. The cumulative value explodes after a few periods, as evidenced by the color of the vertices’ right half. The entire system
is disrupted and eventually crashes.

Appendices

A.1. Algorithm for SFDs of AR(p) processes

Snippet 1 contains the algorithm, coded in Python,
that creates the basic SFD architecture of an AR(p)
process. It makes use of the Networkx library, an
open-source software developed by scientists at the Los
Alamos National Laboratory. Networkx is available at
http://networkx.lanl.gov/.

The function is instantiated as SFD AR(p), where
p denotes the number of lags. All arcs are then gen-
erated, outbound and inbound. Weights are arbitrarily
assigned a value of 1. The function returns the result-

ing weighted digraph as an object D. The reader can
use this template to remove arcs that are statistically
insignificant, and dynamically change the weights.

A.2. Algorithm for SFDs of VAR(p) system on
n equations

Snippet 2 contains the algorithm, coded in Python,
that creates the basic SFD architecture of a VAR(p)
system on n equations. The function is instantiated as
SFD VAR(p,n), where p denotes the number of lags
and n the number of equations. All arcs are then gen-
erated, outbound and inbound. Weights are arbitrarily

Snippet 1. SFD of an AR(p) process.

http://networkx.lanl.gov/
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assigned a value of 1. The function returns the result-
ing weighted digraph as an object D. Like in the
AR(p) case, the reader can use this template to remove
arcs that are statistically insignificant, and dynamically
change the weights.

A.3. Algorithm for SFDs of Svar systems

Snippet 3 contains the algorithm, coded in Python,
that creates the basic SFD architecture of a SVAR
system, which combines synchronous as well as

Snippet 2. SFD of a VAR(p) system on n equations.

Snippet 3. SFD of a SVAR system on n equations and p lags.
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Snippet 4. Building the SFD from an a matrix of estimated system parameters.

lagged regressors. The function is instantiated as
SFD SVAR(p,n), where p denotes the number of lags
and n the number of equations.

A.4. From estimated system parameters to SFDs

Snippet 4 shows how to build a SFD from a matrix
of estimated system parameters. This is accomplished
by function formGraphFromBetas(betas). The betas
argument is a Pandas DataFrame object that contains

all the estimated betas. Its structure is: One row vec-
tor per equation, where each column is associated with
one regressor. The column names are the names of the
regressors, and the index names are the names of the
variable estimated by each equation. The aR2 argument
is another Pandas DataFrame object, containing all the
adjusted R-Squares (a single column, with one equa-
tion per row). Values in betas determine the weight and
color of the outbound arcs, while values in aR2 deter-
mine their width. See Appendix 6 for additional details
regarding the symbology employed.
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A.5. SFDs glossary

In this section we will summarize how to read a SFD,
and justify the symbology chosen. A small number of
attributes is able to represent a wide variety of system
architectures. These attributes can be further expanded
to signal additional features in complex Time Series
systems.

A.5.1. Vertices

Vertices have two shapes:

• Elliptical, for a current variable. There is only
one in AR specifications, and multiple in VAR
and SVAR systems.

• Diamond, for a lagged variable.

Vertices can have two colors:

• Red: The variable has a negative value (darker
as more negative).

• Green: The variable has a positive value
(darker as more positive).

If the variable expresses a change in value rather than
a cumulative value (e.g., in an equation in differences),
then the vertex is divided in two halves, where the left
half is colored according to the change in value and the
right according to the cumulative value.

The label inside the vertex indicates the variable
name, and in the case of a lagged variable, also the
order of the lag.

A.5.2. ARCS

Arcs can have three shapes:

• Dashed arc line, with unfilled arrowhead:
This denotes an outbound arc, i.e. an arc that
carries flow to a diamond vertex (lagged vari-
able). They appear in all Time Series models.
This is a convenient representation, because
these arcs can only have a unit weight, hence
no colour is needed to convey the weight.

• Solid arrow, with pointed arrowhead: This
denotes an inbound arc involved in a lead-lag
effect (connecting a diamond vertex with an
elliptical vertex), e.g. in AR processes and VAR
systems.

• Solid arrow, with flat arrowhead: This
denotes the inbound arc involved in a con-

temporaneous effect (connecting two elliptical
vertices), e.g. in SVAR systems.

Inbound arcs can have two colors:

• Red: Negative weight (darker as more nega-
tive).

• Green: Positive value (darker as more posi-
tive).

The width of an inbound arc is a function of the
goodness of fit associated with that equation.

A.6. System Reverberation

Consider a VAR(1) model on 2 variables

y1,t = ϕ1,1,1y1,t−1 + ϕ1,2,1y2,t−1 + ε1,t

y2,t = ϕ2,1,1y1,t−1 + ϕ2,2,1y2,t−1 + ε2,t (17)

whereϕi,j,k is the regression coefficient associated with
equation i, regressor j, after k lags. The error terms
satisfy the conditions of a generalized white noise. It
is evident that each equation can forecast the variable
on the left side of the equality for one step. However,
each equation interacts with the other over horizons
greater than one, thus forming a system. To see how,
let’s express this system in matrix form,

Yt = (Yt−1 (18)

where Yt =
[

y1,t

y2,t

]
and ( =

[
ϕ1,1,1 ϕ1,2,1

ϕ2,1,1 ϕ2,2,1

]
. The

spectral decomposition (W = W) leads to the
eigenvalue equation |(− I)| = 0, where W, ) are
respectively the matrix of eigenvector and eigenvalue
of (, I the identity matrix, and |.| is the determinant.
Operating,
[
ϕ1,1,1 −)1,1 ϕ1,2,1

ϕ2,1,1 ϕ2,2,1 −)2,2

]
= 0

⇒ (ϕ1,1,1 −)1,1)(ϕ2,2,1 −)2,2) − ϕ1,2,1ϕ2,1,1 = 0

(19)

This second degree equation has roots in

)1,1 = tr[(] +
√

(tr[(])2 − 4 |(|
2

)2,2 = tr[(] −
√

(tr[(])2 − 4 |(|
2

(20)
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where tr[(] and |(| are respectively the trace and
determinant of (. Now that we have computed the )
that makes the matrix(− I) singular, we can proceed
with computing the eigenvector matrix, by finding the
kernel of (− I).

For )1,1, we establish a system of equations
[
ϕ1,1,1 −)1,1 ϕ1,2,1

ϕ2,1,1 ϕ2,2,1 −)2,2

] [
W1,1

W2,1

]
=

[
0

0

]
(21)

Elemental row operations yield the result⎡

⎢⎣
1

ϕ1,2,1

ϕ1,1,1 −)1,1

0 1

⎤

⎥⎦, so we can reduce the system to

W1,1 + W2,1
ϕ1,2,1

ϕ1,1,1 −)1,1
= 0

W2,1 = 1 (22)

Applying the especial solutions on the kernel allow
us to conclude that

W =

⎡

⎢⎣

−ϕ1,2,1

ϕ1,1,1 −)1,1

−ϕ1,2,1

ϕ1,1,1 −)2,2

1 1

⎤

⎥⎦ (23)

Given some initial conditions y1,0, y2,0, it must be

satisfied that

[
y1,0

y2,0

]
= Wc, where c is a column vec-

tor that solves W for the initial conditions. Assuming
that( is invertible, we know that(must be diagonal-

izable as( = W)W−1. Then,

[
y1,1

y2,1

]
= (

[
y1,0

y2,0

]
=

W)W−1Wc = W)c. Multiplying k times by ( will

yield

[
y1,k

y2,k

]
= (k

[
y1,0

y2,0

]
= W)kc, or what is the

same,

Yk =
[

y1,k

y2,k

]
= c1)

k
1,1

[
W1,1

W2,1

]
+ c2)

k
2,2

[
W1,2

W2,2

]

(24)

At the initial conditions, Y0 =
[

y1,0

y2,0

]
=

c1

[
W1,1

W2,1

]
+ c2

[
W1,2

W2,2

]
, from where we obtain

c1 = y2,0 − c2

c2 = y1,0 − y2,0W1,1

W1,2 − W1,1
(25)

Our solution is analytical and in closed-form. This
means that the long-run forecast can be estimated in a
single calculation for any horizon, without requiring a
sequential estimation over a sufficiently large number
of iterations.

Now that we know how to estimate this dynamic
system, we would like to understand what causes a
crash from a mathematical standpoint. Looking at Eq.
(24), we can identify the following states:

• Stable state:
∣∣)i,i

∣∣ < 1 for i = 1, 2. Both eigen-
values must be smaller than one in absolute value.
If imaginary eigenvalues exist, their real part must
be smaller than one in absolute value.

• Steady state: ∃i, j
∣∣∣∣)i,i

∣∣ = 1,
∣∣)j,j

∣∣ < 1 . The
absolute value of one eigenvalue is equal to one,
and the other is not greater than one in absolute
value (or their real part, being imaginary).

• Explosive state: ∃i
∣∣∣∣)i,i

∣∣ > 1 . The absolute value
of any eigenvalue is greater than one (or their real
part, being imaginary).
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